
Test-driven development –
Why and how to do it in Swift

Alex Hoppen – CocoaHeads Aachen – 26.2.2015

Why?
• Create App bottom-up instead of top down

• Better architecture

• Makes you think about what you are going to do

• Documentation

• Find bugs early

• Confidence when refactoring

• Good feeling ;-)

My TDD workflow
Write

method
header

Write
documen-

tation

Write
failing
test

Write
production

code

Refractor

My TDD workflow
Write

method
header

Write
documen-

tation

Write
failing
test

Write
production

code

Refractor

What should
the method
actually do?

→ slows you down
→ documentation

My TDD workflow
Write

method
header

Write
documen-

tation

Write
failing
test

Write
production

code

Refractor

Does the API
„feel good“?
→ better

architecture

My TDD workflow
Write

method
header

Write
documen-

tation

Write
failing
test

Write
production

code

Refractor

If all tests pass
you know it complies
to the specification
→ Find bugs early

My TDD workflow
Write

method
header

Write
documen-

tation

Write
failing
test

Write
production

code

Refractor

If all tests stay green
you know, you messed

nothing up
→ Confidence when

refactoring

Are you slower?

Are you slower?

To be honest: Yes
but

Are you slower?

To be honest: Yes
but

Demo

• Let’s make a crap app that fetches temperatures
from openweathermap.org for Aachen and
display them in a table view

• What makes this app non-trivial:
• External dependencies
• Asynchronous code
• Swift !

http://openweathermap.org

Demo – overview

JSONLoader

OpenWeatherConnector WeatherForecast

WeatherForecastTableViewDataSource

Demo
https://github.com/ahoppen/CocoaWeather

What we just saw
• Make all dependencies of an object explicit via

dependency injection

• Mock external dependencies to really test a
specific unit

• Use XCTAssert… to test values

• Use XCTestExpectation for asynchronous
assertions

Final words – my opinion

• A test / production code ratio of 2 is usual. At the
beginning it may even be higher.

• Don’t worry if it feels awkward at first. It get’s
better with time and saves you time after the
initial creation of the app

• Don’t write code without a test for it

Useful resources to get
started

• Trivial examples: Just google

• Another (slightly more complex) example: http://
qualitycoding.org/objective-c-tdd/

• Swift-specific unit testing-problems: http://
www.andrewcbancroft.com/2014/12/19/swift-unit-
testing-resources/

• objc.io Testing article: http://www.objc.io/issue-15/
editorial.html

